Renaturação do Gene XAC 2810 de *Xanthomonas axonopodis* pv *citri* utilizando Altas Pressões Hidrostáticas

Fabiana Mourão dos Santos e Ligia Ely Morganti Ferreira Dias Instituto de Pesquisas Energéticas e Nucleares - IPEN

INTRODUÇÃO

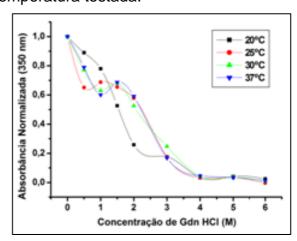
A produção de polipéptideos recombinantes em hospedeiros procarióticos muitas vezes resulta em incompletos processos renaturação, com o acúmulo de agregados insolúveis no citoplasma, conhecidos como corpos de inclusão (CIs) [1]. A alta pressão hidrostática tem sido utilizada como uma dissociação ferramenta para а renaturação destes agregados, sem a necessidade de desnaturar as estruturas nativas nos CIs, possibilitando o aumento rendimentos renaturação de proteínas com conformação nativa atividade biológica [2]. Foi utilizada a proteína produto do gene XAC2810 de Xanthomonas axonopodis pv citri, uma bactéria causadora do cancro cítrico em uma variedade de hospedeiros.

OBJETIVO

Estudar o processo de renaturação da proteína insolúvel de *Xanthomonas axonopodis* pv citri – gene XAC2810, utilizando altas pressões hidrostáticas.].

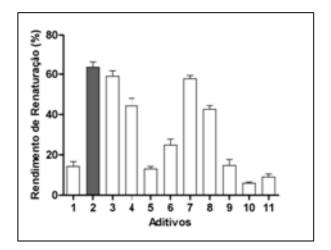
METODOLOGIA

A expressão da proteína produto do gene XAC2810 foi realizada em diferentes temperaturas. Os CIs foram lavados utilizando-se metodologia previamente descrita [3].


A solubilidade dos CIs produzidos em diferentes temperaturas foi testada pelo efeito solubilizante de Hidrocloreto de Guanidina (GdnHCI).

Com a finalidade de obtenção de renaturação da proteína, amostras de Cls foram submetidas a 2,4 kbar (16 horas), seguido de descompressão para pressão atmosférica, na presença de diferentes aditivos no tampão de renaturação.

Os sobrenadantes das amostras foram dialisados e foram congelados para posterior análise em eletroforese em gel de poliacrilamida (SDS-PAGE).


RESULTADOS

A curva de solubilização dos CIs com GdnHCI (figura 1) mostra que os CIs produzidos à 20°C foram mais facilmente solubilizados (ponto médio: 1,5 M de Gdn HCI), do que os CIs produzidos à 37°C (ponto médio: 2,5 M de Gdn HCI). Tendo em vista que a expressão de CIs produzidos em baixas temperaturas produz agregados mais facilmente solubilizáveis, optamos pela expressão desta proteína na menor temperatura testada.

Figura 1. Efeito de diferentes concentrações de GdnHCl na dissociação de Cls produzidos em diferentes temperaturas de cultivo.

Foi obtido um rendimento de renaturação de 10% da proteína quando a suspensão de Cls foi submetida à alta pressão (2,4 kbar) durante 16 horas na ausência de aditivos. No entanto, o rendimento de renaturação da proteína subiu para 62% quando a suspensão de Cls foi pressurizada na presença de 0,5 M do aminoácido L-Arginina (Figura 2).

Figura 2. Rendimento de solubilização de amostras solúveis de CIs submetidos à pressão de 2,4 kbar para a seleção de diferentes aditivos. 1. NaCI; 2. L-Arginina sem GdnHCI; 3. L-Arginina com GdnHCI; 4. Glicose; 5. Sacarose; 6. Peg; 7. GliceroI; 8. Tween; 9. Triton; 10. Bis-ANS e 11. Ausência de aditivo. One-way ANOVA, p < 0,005.

CONCLUSÕES

Utilizando corpos de inclusão do gene XAC2810 de Xanthomonas axonopodis pv citri, obtivemos 62% de rendimento de renaturação desta proteína pela utilização de altas pressões hidrostáticas na presença do aminoácido L-Arginina no tampão de renaturação. Pelo que é de nosso conhecimento a renaturação desta proteína não foi anteriormente obtida por outros grupos de estudo

REFERÊNCIAS BIBLIOGRÁFICAS

[1] Baneyx, F. and M. Mujacic. "Recombinant protein folding and misfolding in Escherichia coli." **22**(11): 1399-408, 2004; [2] Lefebvre, B. G., M. J. Gage, et al. "Maximizing recovery of native protein from aggregates by optimizing pressure treatment." **20**(2): 623-9, 2004;

[3] Malavasi, N. V., D. Foguel, et al. "Protein refolding at high pressure: Optimization using eGFP as a model." **46**(2): 512-518, 2011.

APOIO FINANCEIRO AO PROJETO

CNPq