ESTUDO DAS MODIFICAÇÕES NO POLIETILENO DE BAIXA DENSIDADE (PEBD) OCORRIDO POR MEIO DE RADIAÇÃO GAMA, COM DIFERENTES DOSES

Ana Claudia Feitoza de Oliveira e Hélio Fernando Rodrigues Ferreto Instituto de Pesquisas Energéticas e Nucleares - IPEN

INTRODUÇÃO

Historicamente, o desenvolvimento e o avanço das sociedades estiveram intimamente ligados às habilidades dos seus membros em produzir e manipular materiais para satisfazer as suas necessidades [1]. O polietileno denominado de baixa densidade (PEBD) suas moléculas apresentam muitas ramificações. Devido ao grande número de cadeias laterais nas moléculas, o polietileno de baixa densidade é muito flexível e de fácil processamento. [2].

OBJETIVO

Estudar os efeitos da radiação gama no PEBD, e sua caracterização em função das propriedades básicas de identificação dos polímeros

METODOLOGIA

No estudo do PEBD foram utilizados as seguintes técnicas:

- Ensaio de tensão e deformação
- Análise Térmica (DSC)
- Análise de cristalinidade
- Ensaio de índice de fluidez
- Ensaio de fração gel
- Análise Termogravimétrica (TGA)

RESULTADOS

Na Figura 1 apresentam o desvio padrão da tensão e deformação em função das diferentes doses de radiação. Todas as amostras tiveram uma redução se comparado com o PEBD puro.

Figura 1 - Tensão e Deformação de PEBD em diferentes doses, N₂ (a) e O₂ (b).

Os resultados da Tabela 1 mostram o grau de cristalinidade e o pico de temperatura de fusão, pois a radiação provoca preferencialmente a cisão da cadeia principal na região amorfa, aumentando a região cristalina. Os valores de temperatura de fusão (T_f) em atmosfera oxidante foram inferiores ao PEBD não irradiado.

TABELA 1 - Resur	no da	análise	térmi	ica
(DSC)	de Pl	EBD.		

Dose	Τ _f	∆Hº _f	Хс	T _f	∆Hº _f	Хс		
kGy	°C	J/g	%	°C	J/g	%		
		N_2			Air			
0	114,2	171,0	61,3	114,2	171,0	61,		
5	115,5	142,6	51,1	111,8	94,3	33,		
10	116,1	128,8	46,3	113,0	95,7	34,		
20	115,8	141,2	50,6	112,5	98,7	35,		
50	114,5	142,8	51,2	111,3	107,2	38,		
100	114,7	122,9	44,2	110,8	111,2	39,		

Nas curvas apresentadas na figura 2 (a) observase a diminuição da cristalinidade em ambos ambientes. No entanto, na presença de ar a cristalinidade foi menor do que com N_2 , porque o processo de degradação provocada pelo O_2 aumenta as ligações cruzadas e restringir a circulação de macromoléculas na fase amorfa.

Figura 2 - Cristalinidade (a) e inchamento (b) de PEBD em diferentes doses.

A fração gel e o índice de fluidez (figura 3) são inversamente proporcionais, ou seja, quanto maior o índice de fluidez, menor será a quantidade de gel formado

Figura 3 - Fração gel (a) e Índice de fluidez (b) de PEBD em diferentes doses.

Analisando-se os gráficos da Figura 4 e 5, observa-se que conforme aumentam as doses de radiação, ocorre também um aumento na temperatura de degradação das amostras, ou seja, as doses de radiação favorecem as ramificações.

Figura 4 - TGA-DTG do PEBD irradiados na presença de O₂.

Figura 5 - TGA-DTG do PEBD irradiados na presença de N₂.

CONCLUSÕES

Através dos experimentos realizados, foi possível avaliar e estudar as novas propriedades modificadas pela radiação gama, A determinação foi evidente tanto no PEBD na presença de O₂ ou de N₂, tendo em vista que as propriedades químicas e físicas foram alteradas, conforme se apontou nos resultados

REFERÊNCIAS BIBLIOGRÁFICAS

[1] CALLISTER JR, William D. "Ciência e engenharia de materiais". Uma Introdução, 7º edição, p.2, 2008.

[2] Telles, Pedro Carlos da Silva, Materiais para equipamentos, 5º edição, 1994.

[3] Atlas of polymer and plastics analysis. 2º ed.: Hummel D. O., v. 2 parte a/I e II, p. 1991, 1994 e 3689. (1994).

APOIO FINANCEIRO AO PROJETO

CNPq